CycloneCRYPTO is a cryptographic toolkit designed for use in embedded systems. It provides a comprehensive set of cryptographic primitives (hash functions, stream and block ciphers, public key cryptography) that can be used to add security features to your embedded application.

Main Features

- Base64 data encoding
- MD2, MD4 and MD5 hash functions
- RIPEMD-128 and RIPEMD-160 hash functions
- SHA-1 hash function
- SHA-2 family hash functions (SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256)
- SHA-3 family hash functions (SHA3-224, SHA3-256, SHA3-384 and SHA3-512)
- BLAKE2b family hash functions (BLAKE2b160, BLAKE2b256, BLAKE2b384, BLAKE2b512)
- BLAKE2s family hash functions (BLAKE2s128, BLAKE2s160, BLAKE2s224, BLAKE2s256)
- Tiger/192 hash function
- Whirlpool hash function
- SHAKE128 and SHAKE256 extendable-output functions (XOF)
- Keccak sponge function
- CMAC, HMAC and GMAC message-authentication code
- RC4 stream cipher
- Block ciphers (RC2, RC6, IDEA, DES, Triple DES, AES, Camellia, SEED, ARIA, PRESENT)
- Supports ECB, CBC, CFB, OFB, CTR and XTS operation modes for all symmetric block ciphers
- Cipher Block Chaining-MAC (CCM) and Galois Counter Mode (GCM)
- ChaCha encryption algorithm
- Poly1305 message-authentication code
- ChaCha2Poly1305 Authenticated Encryption with Associated Data (AEAD)
- RSA public key cryptography (PKCS #1 v1.5 and v2.2)
- Digital Signature Algorithm (DSA)
- Diffie-Hellman key exchange (PKCS #3)
- Password-Based Cryptography Standard (PKCS #5)
- Elliptic Curve Cryptography (ECC)
- Curve25519 (X25519) and Curve448 (X448) elliptic curves
- Elliptic Curve Diffie-Hellman (ECDH)
- Elliptic Curve Digital Signature Algorithm (ECDSA)
- EdDSA signature scheme (Ed25519 and Ed448 elliptic curves)
- Supports elliptic curves defined over prime fields (NIST-P and Brainpool)
- HKDF key derivation function
- Multiple precision arithmetic library with optimized assembly code (for ARM and MIPS-based microcontrollers)
- X.509 certificate, CRL and CSR parsing functions
- X.509 certification and CSR generation
- Parsing/Formatting of public/private keys (PKCS #1 and PKCS #8 formats supported)
- bcrypt and scrypt password hashing function
- Flexible memory footprint. Built-time configuration to embed only the necessary features
- Portable architecture (supports little-endian and big-endian architectures)
- Extensive test suite available on request (for commercial licenses)
Supported Processors

- ARM Cortex-M3
- ARM Cortex-M4
- ARM Cortex-M7
- ARM Cortex-R4
- ARM Cortex-A5
- ARM Cortex-A8
- ARM Cortex-A9
- Legacy ARM7TDMI / ARM926EJ-S
- RISC-V
- MIPS M4K
- MIPS microAptiv
- PowerPC e200
- Coldfire V2
- RX600
- AVR32
- Xtensa LX6

Supported Compilers / Toolchains

- GNU GCC / Makefile
- Atollic TrueSTUDIO
- IAR Embedded Workbench
- Keil MDK-ARM
- Microsoft Visual Studio
- Segger Embedded Studio
- AC6 System Workbench for STM32 (SW4STM32)
- Atmel Studio
- Infineon DAVE
- Microchip MPLAB X
- NXP MCUXpresso
- Renesas e2Studio
- ST STM32CubeIDE
- TI Code Composer Studio (CSS)

Supported Operating Systems

- Amazon FreeRTOS
- ChibiOS/RT
- CMSIS-RTOS
- CMSIS-RTOS2 (RTX v5 and FreeRTOS)
- Keil RTX
- Micrium μC/OS-II
- Micrium μC/OS-III
- Segger embOS
- SYS/BIOS (TI-RTOS)
- Bare Metal programming (without RTOS)
RFC

- RFC 1319: The MD2 Message-Digest Algorithm
- RFC 1321: The MD5 Message-Digest Algorithm
- RFC 2104: HMAC: Keyed-Hashing for Message Authentication
- RFC 2268: A Description of the RC2 Encryption Algorithm
- RFC 2313: PKCS #1: RSA Encryption Version 1.5
- RFC 2631: Diffie-Hellman Key Agreement Method
- RFC 2898: PKCS #5: Password-Based Cryptography Specification Version 2.0
- RFC 3174: US Secure Hash Algorithm 1 (SHA1)
- RFC 3447: PKCS #1: RSA Cryptography Specifications Version 2.1
- RFC 4269: The SEED Encryption Algorithm
- RFC 4634: US Secure Hash Algorithms (SHA and HMAC-SHA)
- RFC 4648: The Base16, Base32, and Base64 Data Encodings
- RFC 5280: Internet X.509 Public Key Infrastructure Certificate and CRL Profile
- RFC 5639: ECC Brainpool Standard Curves and Curve Generation
- RFC 5794: A Description of the ARIA Encryption Algorithm
- RFC 5869: HMAC-based Extract-and-Expand Key Derivation Function (HKDF)
- RFC 5915: Elliptic Curve Cryptography
- RFC 6090: Fundamental Elliptic Curve Cryptography Algorithms
- RFC 7468: Textual Encodings of PKIX, PKCS, and CMS Structures
- RFC 7539: ChaCha20 and Poly1305 for IETF Protocols
- RFC 7693: The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC)
- RFC 7748: Elliptic Curves for Security (Curve25519 and Curve448)
- RFC 7914: The scrypt Password-Based Key Derivation Function
- RFC 8017: PKCS #1: RSA Cryptography Specifications Version 2.2
- RFC 8032: Edwards-Curve Digital Signature Algorithm (EdDSA)
- RFC 8410: Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use in the Internet X.509 Public Key Infrastructure

IEEE


Certicom Research

- SEC 1: Elliptic Curve Cryptography
- SEC 2: Recommended Elliptic Curve Domain Parameters

NIST

- FIPS 46-3: Data Encryption Standard
- FIPS 180-4: Secure Hash Standard
- FIPS 186-4: Digital Signature Standard (DSS)
- FIPS 197: Advanced Encryption Standard
- FIPS 198-1: The Keyed-Hash Message Authentication Code (HMAC)
- FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output Functions
- SP 800-38A: Recommendation for Block Cipher Modes of Operation - Methods and Techniques
- SP 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality
- SP 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
- SP 800-56A: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

RSA Laboratories

- PKCS #1: RSA Cryptography Standard
- PKCS #3: Diffie-Hellman Key Agreement Standard
- PKCS #5: Password-Based Cryptography Standard
- PKCS #8: Private-Key Information Syntax Standard
- PKCS #10: Certification Request Standard